
www.manaraa.com

Scale in Distributed SystemsB. Cli�ord NeumanInformation Sciences InstituteUniversity of Southern CaliforniaAbstractIn recent years, scale has become a factor of increasing importance in the design of distributedsystems. The scale of a system has three dimensions: numerical, geographical, and admin-istrative. The numerical dimension consists of the number of users of the system, and thenumber of objects and services encompassed. The geographical dimension consists of the dis-tance over which the system is scattered. The administrative dimension consists of the numberof organizations that exert control over pieces of the system.The three dimensions of scale a�ect distributed systems in many ways. Among the a�ectedcomponents are naming, authentication, authorization, accounting, communication, the use ofremote resources, and the mechanisms by which users view the system. Scale a�ects reliability:as a system scales numerically, the likelihood that some host will be down increases; as itscales geographically, the likelihood that all hosts can communicate will decrease. Scale alsoa�ects performance: its numerical component a�ects the load on the servers and the amountof communication; its geographic component a�ects communication latency. Administrativecomplexity is also a�ected by scale: administration becomes more di�cult as changes becomemore frequent and as they require the interaction of di�erent administrative entities, possiblywith con
icting policies. Finally, scale a�ects heterogeneity: as the size of a system grows itbecomes less likely that all pieces will be identical.This paper looks at scale and how it a�ects distributed systems. Approaches taken by existingsystems are examined and their common aspects highlighted. The limits of scalability in thesesystems are discussed. A set of principles for scalable systems is presented along with a list ofquestions to be asked when considering how far a system scales.1 What is Scale?
B. Cli�ord Neuman. Scale in Distributed Systems. In Readings in DistributedComputing Systems. IEEE Computer Society Press, 1994.

In recent years scale has become an increas-ingly important factor in the design of dis-tributed systems. Large computer networkssuch as the Internet have broadened the pool ofresources from which distributed systems canThis work was performed while the author was com-pleting a PhD at the University of Washington and wassupported in part by the National Science Foundation(Grant Number CCR-8619663), the Washington Tech-nology Centers, and Digital Equipment Corporation.
be constructed. Building a system to fully usesuch resources requires an understanding of theproblems of scale.A system is said to be scalable if it can han-dle the addition of users and resources withoutsu�ering a noticeable loss of performance or in-crease in administrative complexity. Scale hasthree components: the number of users and ob-Author's address: University of Southern California, In-formation Sciences Institute, 4676 Admiralty Way, Ma-rina del Rey, California 90292 USA. (bcn@isi.edu)



www.manaraa.com

jects that are part of the system, the distancebetween the farthest nodes in the system, andthe number of organizations that exert admin-istrative control over pieces of the system.If a system is expected to grow, its ability toscale must be considered when the system isdesigned. Naming, authentication, authoriza-tion, accounting, communication, and the useof remote resources are all a�ected by scale.Scale also a�ects the user's ability to easily in-teract with the system.Grapevine was one of the earliest distributedcomputer systems consciously designed toscale. More recent projects such as the In-ternet Domain Naming System (IDNS), Ker-beros, Sprite, and DEC's Global Naming andAuthentication Services have concentrated onparticular subsystems. Other projects have at-tempted to provide complete scalable systems.Among them are are Locus, Andrew, ProjectAthena, Dash, and Amoeba. Scale a�ects theway users perceive a system: as the number ofobjects that are accessible grows, it becomesincreasingly di�cult to locate the objects of in-terest. Plan 9, Pro�le, Prospero, QuickSilver,and Tilde are a few systems that address thisaspect of scale.This paper examines the methods used to han-dle scale in these and other systems. Section 3discusses the problems of scale and presentsgeneral solutions to the problems. Sections 4through 6 look at the problems speci�c to in-dividual subsystems and discuss the particu-lar solutions used by several systems. Thesesolutions generally fall into three categories:replication, distribution, and caching, de�nedin Section 2 and discussed further in Sections 7through 9. While earlier sections describe thea�ect of scale on the systems themselves, Sec-tion 10 examines some of the problems thatconfront the users of large systems. The tech-niques covered in this paper are summarizedin Section 11 as a list of suggestions to be fol-

lowed and questions to be asked when build-ing scalable systems. Section 12 summarizesthe scope, limitations, and conclusions drawnin this paper. Short descriptions of the sys-tems mentioned in this paper may be found inan appendix.2 De�nitionsThere are several terms used repeatedlythroughout this paper. They are de�ned herefor quick reference.When used in this paper the term system refersto a distributed system. A distributed systemis a collection of computers, connected by acomputer network, working together to collec-tively implement some minimal set of services.A node is an individual computer within thesystem. A site is a collection of related nodes,a subset of the nodes in the system.A service or resource is replicated when it hasmultiple logically identical instances appearingon di�erent nodes in a system. A request foraccess to the resource can be directed to anyof its instances.A service is distributed when it is provided bymultiple nodes each capable of handling a sub-set of the requests for service. Each request canbe handled by one of the nodes implementingthe service (or a subset of the nodes if the ser-vice is also replicated). A distribution functionmaps requests to the subset of the nodes thatcan handle it.The results of a query are cached by sav-ing them at the requesting node so that theymay be reused instead of repeating the query.Caching improves the performance of a localnode by reducing the time spent waiting fora response. Caching improves scalability byreducing the number of repeated queries sentto a server. Caches employ validation tech-2



www.manaraa.com

niques to make sure that data from the cacheare not used if the results of the query mighthave changed. Caching is a temporary form ofreplication.3 The E�ects of ScaleScale a�ects systems in numerous ways. Thissection examines the e�ects of scale on relia-bility, load, administration, and heterogeneity.These e�ects are felt by all parts of the system.3.1 ReliabilityAs the number of components in a distributedsystem increases, the likelihood decreases thatthey will all be working simultaneously. As thesystem scales geographically, it becomes lesslikely that all components will be able to com-municate. A system should not cease to oper-ate just because certain nodes are unavailable.Reliability can often be improved by increasingthe autonomy of the nodes in a system. A col-lection of nodes is autonomous if it runs inde-pendently from the other nodes in the system.A failure in an autonomous system only a�ectsaccess to resources in the neighborhood of thefailure. For example, failure of a name server inone part of a network would not prevent accessto local resources in another.Replication can also improve the reliability ofa system. Replication allows a resource to beused even if some of the instances are not run-ning or are inaccessible. Replicas can be scat-tered across the network so that a network fail-ure is less likely to isolate any part of the sys-tem from all of the replicas. It might also bepossible to dynamically recon�gure the set ofservers used by a client so that if a server goesdown, clients can continue with as little disrup-tion as possible.

3.2 System LoadScale a�ects system load in a number of ways.As a system gets bigger the amount of datathat must be managed by network servicesgrows, as does the total number of requests forservice. Replication, distribution, and cachingare all used to reduce the number of requeststhat must be handled by each server. Repli-cation and distribution allow requests to bespread across multiple servers, while cachingreduces repeated requests. The use of multiple�le servers, each providing storage for di�erent�les, is an example of distribution. The exis-tence of the same system binaries on more thanone server is an example of replication. Withreplication, the choice of server can be basedon factors such as load and proximity.3.3 AdministrationThe administrative dimension of scale adds itsown problems. As the number of nodes in asystem grows, it becomes impractical to main-tain information about the system and its userson each node; there are too many copies tokeep up-to-date. Administration of a collec-tion of nodes is made easier when common in-formation is maintained centrally; for example,through a name server, authentication server,or through a �le server that provides a centralrepository for system binaries.As a system continues to grow, informationabout the system changes more frequently.This makes it less practical for a single indi-vidual to keep it up-to-date. Additionally, as asystem crosses administrative boundaries, or-ganizations want control over their own partof the system. They are less willing to del-egate that control to individuals outside theirorganization. These problems can be addressedby distribution. Responsibility for maintain-ing pieces of the database are assigned to each3



www.manaraa.com

organization, and each organization maintainsthat part of the databases concerning its ownsystems. Section 8 describes the methods thatcan be used to distribute the database.3.4 HeterogeneityThe administrative dimension of scale com-pounds the problem of heterogeneity. It islikely that systems which cross administrativeboundaries will not only include hardware ofdi�erent types, but they may also be runningdi�erent operating systems or di�erent versionsof the same operating system. It is not practi-cal to guarantee that everyone runs exactly thesame software.Coherence is one approach to dealing with het-erogeneity. In a coherent system, all comput-ers that are part of the system support a com-mon interface. This requirement takes severalforms. All nodes might be required to sup-port the same instruction set, but this is notoften practical. A looser requirement is thatall nodes support a common execution abstrac-tion. Two computers share the same executionabstraction if software that runs on one com-puter can be easily recompiled to run on theother. Still looser is coherence at the proto-col level: all nodes are required to support acommon set of protocols, and these protocolsde�ne the interfaces to the subsystems whichtie the system together. MIT's Project Athena[6] is an example of a system that uses coher-ence (of the execution abstraction) to deal withheterogeneity.The Heterogeneous Computer Systems Project[21] provides explicit support for heterogeneity.A mechanism is provided that allows the useof a single interface when communicating withnodes that use di�erent underlying protocols.The HCS approach shows that it is possible tosupport multiple mechanisms in heterogeneoussystems. This ability is important when di�er-

ent mechanisms have di�erent strengths andweaknesses.We have just seen some of the issues that a�ectthe scalability of a system as a whole. In thenext few sections we will examine the e�ects ofscale on particular subsystems.4 Naming and DirectoryServicesA name refers to an object. An address tellswhere that object can be found. The bindingof a name is the object to which it refers. Aname server (or directory server) maps a nameto information about the name's binding. Theinformation might be the address of an object,or it might be more general, e.g., personal in-formation about a user. An attribute-basedname service maps information about an ob-ject to the object(s) matching that informa-tion. Attribute-based naming is discussed inSection 10.4.1 Granularity of NamingName servers di�er in the size of the objectsthey name. Some name servers name onlyhosts. The names of �ner grained objects suchas services and �les must then include the nameof the host so that the object can be found. Aproblem with this approach is that it is di�cultto move objects. Other name servers name in-dividual users and services. The names of suchentities do not change frequently, so the ratioof updates to references is usually fairly low.This simpli�es the job of a name server con-siderably. A few name servers name individual�les. There are a huge number of �les and theyare often transient in nature. Supporting nam-ing at this level requires support for frequentupdates and a massive number of queries.4



www.manaraa.com

An intermediate approach is used by Sprite [22]and a number of other �le systems. Groups ofobjects sharing a common pre�x are assignedto servers. The name service maps the pre�xto the server, and the remainder of the name isresolved locally by the server on which the ob-ject is stored. An advantage of this approach isthat the name service handles fewer names, andthe pre�xes change less frequently than the fullnames of the objects. This also allows clientsto easily cache the mappings they have learned.Another advantage is that names need not in-clude the name of the server on which the ob-ject resides, allowing groups of objects (shar-ing a common pre�x) to be moved. The maindisadvantage is that objects sharing commonpre�xes must be stored together1.The size of the naming database, the frequencyof queries, and the read-to-write ratio are all af-fected by the granularity of the objects named.These factors a�ect the techniques that can beused to support naming in large systems.4.2 Reducing LoadThree techniques are used to reduce the num-ber of requests that must be handled by a nameserver. The simplest is replication. By allow-ing multiple name servers to handle the samequeries, di�erent clients are able to send theirrequests to di�erent servers. This choice can bebased on physical location, the relative loads ofthe di�erent servers, or made at random. Thedi�culty with replication lies in keeping thereplicas consistent. Consistency mechanismsare discussed in Section 7.Distribution is a second technique for spread-ing the load across servers. In distribution, dif-ferent parts of the name space are assigned todi�erent servers. Advantages to distribution1Actually, a pre�x can be an entire �le name, butthis can only be done with a very limited number ofobjects and does not scale.

are that only part of the naming database isstored on each server, thus reducing the num-ber of queries and updates to be processed.Further, because the size of each database issmaller, each request can usually be handledfaster. With distribution, the client must beable to determine which server contains the re-quested information. Techniques for doing soare described in Section 8.Caching is a third technique that reduces theload on name servers. If a name is resolvedonce, it will often need to be resolved again.If the results are remembered, additional re-quests for the same information can be avoided.As will be seen later, caching is of particu-lar importance in domain-based distribution ofnames. Not only is the same name likely tobe used again, but so are names with commonpre�xes. By caching the mapping from a pre�xto the name server handling it, future namessharing the same pre�x can be resolved withfewer messages. This is extremely importantbecause, as pre�xes become shorter, the num-ber of names that share them grows. Withoutthe caching of pre�xes, high-level name serverswould be overloaded, and would become a bot-tleneck for name resolution. Caching is a formof replication, and like replication, the need tokeep things consistent is its biggest di�culty.Caching is described in greater detail in Sec-tion 9.4.3 UID-Based NamingNot all distributed systems use a hierarchi-cal name service like those that have been de-scribed. Some systems use unique identi�ers toname objects. Capability-based systems suchas Amoeba [30] fall into this category. A ca-pability is a unique identi�er that both namesand grants access rights for an object. UniqueIDs may be thought of as addresses. They usu-ally contain information identifying the server5



www.manaraa.com

that maintains the object, and an identi�er tobe interpreted by the server. The informationidentifying the server might be an address or itmight be a unique identi�er to be included inrequests broadcast by the client. A client need-ing to access an object or service is expectedto already possess its unique identi�er.A problem with uid-based naming is that ob-jects move, but the UIDs often identify theserver on which an object resides. Since theUIDs are scattered about without any way to�nd them all, they might continue to exist withincorrect addresses for the objects they refer-ence. A technique often used to solve this prob-lem is forwarding pointers [8]. With forward-ing pointers, a user attempting to use an oldaddress to access an object is given a new UIDcontaining the new address. A drawback to for-warding pointers is that the chain of links tobe followed can become lengthy. This reducesperformance, and if one of the nodes in thechain is down, it prevents access to the object.This drawback is solved in Emerald by requir-ing that each object have a home site and thatthe forwarding pointer at that site is kept up todate. Another solution is for the client to up-date the forwarding pointers traversed if sub-sequent forwarding pointers are encountered.Prospero [20] supports UIDs with expirationdates. Its directory service guarantees thatthe UIDs it maintains are kept up-to-date. Byusing expiration dates, it becomes possible toget rid of forwarding pointers once all possibleUIDs with the old address have expired.4.4 Directory ServicesEven in uid-based systems, it is often desirableto translate from symbolic names that humansuse into the UIDs for the named objects. Di-rectory service do this. Given a UID for a di-rectory it is possible to read the contents ofthat directory, to map from a symbolic name

in the directory to another UID, and to add asymbolic name/UID pair to the directory. Adirectory can contain UIDs for �les, other di-rectories, or in fact, any object for which a UIDexists.The load on directory servers is easily dis-tributed. There is no requirement that a sub-directory be on the same server as its par-ent. Di�erent parts of a name space can re-side on di�erent machines. Replication can besupported by associating multiple UIDs withthe same symbolic name, or through the useof UIDs that identify multiple replicas of thesame object or directory.The primary di�erences between a name serverand a directory server is that the directoryserver usually possess little information aboutthe full name of an object. A directoryserver can support pieces of independent namespaces, and it is possible for those name spacesto overlap, or even to contain cycles. BothProspero and Amoeba use directory servers totranslate names to UIDs.4.5 Growth and ReorganizationFor a system to be scalable, it must be able togrow gracefully. If two organizations with sep-arate global name spaces merge, reorganize, orotherwise combine their name spaces, a prob-lem arises if the name spaces are not disjoint.The problem arises because one or both namespaces suddenly change. The new names corre-spond to the old names, but with a new pre�xcorresponding to the point in the new namespace at which the original name space was at-tached. This causes problems for any nameswhich were hardcoded in programs or other-wise speci�ed before the change.DEC's Global Name Service [14] addresses thisproblem by associating a unique number withthe root of every independent name space.6



www.manaraa.com

When a �le name is stored, the number forthe root of the name space can be stored alongwith the name. When name spaces are merged,an entry is made in the new root pairing theunique ID of each previous root with the pre�xrequired to �nd it. When a name with an as-sociated root ID is resolved, the ID is checked,and if it doesn't match that for the currentroot, the corresponding pre�x is prepended, al-lowing the hardcoded name to work.5 The Security SubsystemAs the size of a system grows, security becomesincreasingly important and increasingly di�-cult to implement. The bigger the system, themore vulnerable it is to attack: there are morepoints from which an intruder can enter thenetwork; the system has a greater number oflegitimate users; and it is more likely that theusers will have con
icting goals. This is partic-ularly troublesome when a distributed systemspans administrative boundaries. The securitymechanisms employed in di�erent parts of asystem will have di�erent strengths. It is im-portant that the e�ects of a security breach canbe contained to the part of the system that wasbroken.Security has three aspects: authentication,how the system veri�es a user's identity; au-thorization, how it decides whether a user isallowed to perform the requested operation;and accounting, how it records what the userhas done, and how it makes sure that a userdoes not use excessive resources. Account-ing can include mechanisms to bill the userfor the resources used. Many systems imple-ment a distributed mechanism for authentica-tion, but leave authorization to the individualserver. Few systems provide for accounting ina distributed manner.

5.1 AuthenticationSeveral techniques are used to authenticateusers in distributed systems. The simplest,the use of passwords on each host, requiresmaintenance of a password database on mul-tiple nodes. To make it easier to administer,Grapevine [3] supported a central service toverify passwords. Password-based authentica-tion can be cumbersome if the user is requiredto present a password each time a new serviceis requested. Unfortunately, letting the work-station remember the users password is risky.Password based authentication is also vulnera-ble to the theft of passwords by attackers thatcan eavesdrop on the network.Host-based authentication, as used for rloginand rsh in Berkeley Unix, has problems too.In host-based authentication, the client is au-thenticated by the local host. Remote serverstrust the host to properly identify the client.As one loses control of the nodes in a system,one is less willing to trust the claims made byother systems about the identity of its users.Encryption-based authentication does not suf-fer from these problems. Passwords are neversent across the network. Instead, each useris assigned an encryption key, and that key isused to prove the user's identity. Encryption-based authentication is not without its ownproblems. Principals (users and servers) mustmaintain a key for use with every other prin-cipal with which they might possibly commu-nicate. This is impractical in large systems.Altogether, (n x m) keys are required where nis the number of users, and m the number ofservers.In [17] Needham and Schroeder show how thenumber of keys to be maintained can be re-duced through the use of an authenticationserver (AS). An AS securely generates keys asthey are needed and distributes them to theparties wishing to communicate. Each party7



www.manaraa.com

4

3

1
2

K

SCFigure 1: Kerberos Authentication Protocolshares a key (or key pair) with the AS.Authentication in Kerberos [29] is based ona modi�ed version of the Needham andSchroeder protocol (Figure 1). When a clientwishes to communicate with a server it con-tacts the AS, sending its own name and thename of the server to be contacted (1). TheAS randomly generates a session key and re-turns it to the client encrypted in the key thatthe client registered with the AS (2). Accom-panying the encrypted session key is a ticketthat contains the name of the client and thesession key, all encrypted in the key that theserver registered with the AS.In Kerberos the session key and ticket receivedfrom the AS are valid for a limited time andare cached by the client, reducing the numberof requests to the AS. Additionally, the user'ssecret key is only needed when initially loggingin. Subsequent requests during the same loginsession use a session key returned by the AS inresponse to the initial request.To prove its identity to the server, the clientforwards the ticket together with a timestampencrypted in the session key from the ticket(3). The server decrypts the ticket and usesthe session key contained therein to decryptthe timestamp. If recent, the server knows that

the message was sent by a principal who knewthe session key, and that the session key wasonly issued to the principal named in the ticket.This authenticates the client. If the clientrequires authentication from the server, theserver adds one to the timestamp, re-encryptsit using the session key and returns it to theclient (4).As a system scales, it becomes less practicalfor an authentication server to share keys withevery client and server. Additionally, it be-comes less likely that everyone will trust a sin-gle entity. Kerberos allows the registrationof principals to be distributed across multi-ple realms. The distribution mechanism is de-scribed in Section 8.The Kerberos authentication protocol is basedon conventional cryptography, but authentica-tion can also be accomplished using public-keycryptography. In public-key cryptography, sep-arate keys are used for encryption and decryp-tion, and the key distribution step of authenti-cation can be accomplished by publishing eachprincipal's public key. When issues such as re-vocation are considered, authentication proto-cols based on public key cryptography makedi�erent tradeo�s, but provide little reductionin complexity. Authentication based on publickey cryptography does, however, make a sig-ni�cant di�erence when authenticating a singlemessage to multiple recipients.5.2 AuthorizationThere are a number of ways distributed sys-tems approach authorization. In one, a requestis sent to an authorization service whenever aserver needs to make an access control decision.The authorization service makes the decisionand sends its answer back to the server. Thisapproach allows the access control decision totake into account factors such as recent use ofother servers, global quotas, etc. The disad-8



www.manaraa.com

vantage is that it can be cumbersome and theaccess control service becomes a bottleneck.In a second approach the client is �rst authen-ticated, then the server makes its own decisionabout whether the client is authorized to per-form an operation. The server knows the mostabout the request and is in the best position todecide whether it should be allowed. For exam-ple, in the Andrew �le system [12] each direc-tory has an associated list, known as an accesscontrol list (ACL), identifying the users autho-rized to access the �les within the directory.When access to a �le is requested, the client'sname is compared with those in the ACL.ACL entries in Andrew can contain the namesof groups. The use of groups allow rights tobe granted to named collections of individu-als without the need to update multiple ACLseach time membership in the group changes.Each Andrew �le server maintains the list ofthe groups to which each user belongs and thatlist is consulted before checking the ACL.The server making an authorization decisionshould be provided with as much informationas possible. For example, if authentication re-quired the participation of more than one AS,the names of the AS's that took part shouldbe available. It should also be possible for theserver to use external sources to obtain infor-mation such as group membership. This ap-proach, used in Grapevine, is similar to usingan authorization service. It di�ers in that notall requests require information from the groupserver, and the �nal decision is left to the endserver.Like Andrew, authorization in Grapevine isbased on membership in ACLs. ACLs con-tain individuals or groups that themselves con-tain individuals or groups. Group membershipis determined by sending to a name server aquery containing the name of the individualand the name of the group. The name server

recursively checks the group for membership bythe individual. If necessary, recursive queriescan be sent to other name servers. One ofthe most noticeable bottlenecks in Grapevinewas the time required to check membershipin large groups, especially when other nameservers were involved. [27]External information can be made available toa server without the need for it to contact an-other service. The client can request crypto-graphically sealed credentials either authoriz-ing its access to a particular object or verifyingits membership in a particular group. Thesecredentials can be passed to the server in amanner similar to that for the capability-basedapproach described next. The di�erence fromcapabilities is that these credentials might onlybe usable by a particular user, or they mightrequire further proof that they were really is-sued to the user presenting them. Version 5 ofKerberos supports such credentials. Their useis described separately in [19].5.2.1 CapabilitiesThe approaches discussed so far have beenbased on an access control list model for autho-rization. A disadvantage of this model is thatthe client must �rst be authenticated, thenlooked up in a potentially long list, the lookupmay involve the recursive expansion of multi-ple groups, and interaction may be requiredwith other servers. The advantages of the ac-cess control list model are that it leaves the�nal decision with the server itself, and that itis straightforward to revoke access should thatbe required.Amoeba [30] uses the capability model for au-thorization. In the capability model, the usermaintains the list of the objects for which ac-cess is authorized. Each object is representedby a capability which, when presented to aserver, grants the bearer access to the ob-9



www.manaraa.com

ject. To prevent users from forging capabilities,Amoeba includes a random bit pattern. Bychoosing the bit pattern from a sparse enoughaddress space, it is su�ciently di�cult for auser to create its own capability. A clientpresents its capability when it wishes to ac-cess an object. The server then compares thebit pattern of the capability with that storedalong with the object, and if they match, theaccess is allowed.The advantage of the capability model is that,once contacted by the client, the server canmake its access control decision without con-tacting other servers. Yet, the server doesnot need to maintain a large authorizationdatabase that would be di�cult to keep up-to-date in a large system. A disadvantage isthat capabilities can only be revoked en masse.Capabilities are revoked by changing the bitpattern, but this causes all outstanding capa-bilities for that object to be immediately inval-idated. The new capability must then be reis-sued to all legitimate users. In a large system,this might be a signi�cant task.Authorization in capability-based distributedsystems is still dependent on authenticationand related mechanisms. Authentication is re-quired when a user logs in to the system beforethe user is granted an initial capability that canbe used to obtain other capabilities from a di-rectory service. Additionally, as was the casewith passwords, capabilities can be easily in-tercepted when they are presented to a serverover the network. Thus, they can not simplybe sent in the clear. Instead, they must besent encrypted, together with su�cient infor-mation to prevent replay. This mechanism isquite similar to that used for encryption-basedauthentication.

5.3 AccountingMost distributed systems handle accounting ona host-by-host basis. There is a need for dis-tributed, secure, and scalable accounting mech-anism, especially in large systems that crossadministrative boundaries. To date, few sys-tems have even considered the problem. Thedi�culty lies in the inability to trust serversrun by unknown individuals or organizations.The bank server [16] and accounting based onproxies [19] are among the few approaches thathave been described.In Amoeba, accounting is handled by bankservers which maintain accounts on behalf ofusers and servers. Users transfer money toservers, which then draw upon the balance asresources are used. Proxy-based accounting istied much closer to authentication and autho-rization. The client grants the server a proxyallowing the server to transfer funds from theclient's account.Both approaches require support for multiplecurrencies. This is important as systems spaninternational boundaries, or as the account-ing service is called on to maintain informationabout di�erent types of resources. The curren-cies can represent the actual funds for whichclients can be billed, or they can represent lim-its on the use of resources such as printer pagesor CPU cycles. Quotas for reusable resources(such as disk pages) can be represented as adeposit which is refunded when the resource isreleased.Authorization and accounting depend on oneanother. In one direction, the transfer of fundsrequires the authorization of the owner of theaccount from which funds will be taken. Inthe other, a server might verify that the clienthas su�cient funds (or quota) to pay for anoperation before it will be performed.10



www.manaraa.com

5.4 On Replication, Distributionand CachingThis section has described the problems spe-ci�c to scaling the security subsystems of largesystems and has discussed the mechanismsused to solve them. Many of problems thatwe saw with naming also arise with security.As with naming, replication, distribution, andcaching are often used. When applying thesetechniques in the security area, a few consider-ations must be kept in mind.When replicating a server that maintains secretkeys, the compromise of any replica can resultin the compromise of important keys. The se-curity of the service is that of the weakest ofall replicas. When distribution is used, mul-tiple servers may be involved in a particularexchange. It is important that both principalsknow which servers were involved so that theycan correctly decide how much trust to placein the results. Finally, the longer one allowscredentials to be cached, the longer it will taketo recover when a key is compromised.As a system grows, less trust can be placedin its component pieces. For this reason,encryption-based security mechanisms are theappropriate choice for large distributed sys-tems. Even encryption-based mechanisms relyon trust of certain pieces of a system. By mak-ing it clear which pieces need to be trusted,end services are better able to decide when arequest is authentic.6 Remote ResourcesNaming and security are not the only parts ofthe system a�ected by scale. Scale a�ects thesharing of many kinds of resources. Amongthem are processors, memory, storage, pro-grams, and physical devices. The services thatprovide access to these resources often inherit

scalability problems from the naming and se-curity mechanisms they use. For example, onecan't access a resource without �rst �nding it.This involves both identifying the resource thatis needed and determining its location given itsname. Once a resource has been found, authen-tication and authorization might be requiredfor its use.These services sometimes have scalability prob-lems of their own, and similar techniques areemployed to solve them. Problems of load andreliability are often addressed through replica-tion, distribution, and caching. Some servicesfurther reduce load by by shifting as much com-putation to the client as possible; however, thisshould only be done when all the informationneeded for the computation is readily accessi-ble to the client.The services used to access remote resourcesare very dependent on the underlying commu-nications mechanisms they employ. This sec-tion will look at the scaling issues related tonetwork communication in such services. Toprovide an example of the problems that arisewhen supporting access to remote resources, itwill then look at the e�ect of scale on a heavilyused resource, the network �le system.6.1 CommunicationAs a system grows geographically, the mediumof communications places limits on the sys-tem's performance. These limits must be con-sidered when deciding how best to access aremote resource. Approaches which mightseem reasonable given a low latency connec-tion might not be reasonable across a satellitelink.Because they can greatly a�ect the usability ofa system, the underlying communications pa-rameters must not be completely hidden fromthe application. The Dash system [1] does a11



www.manaraa.com

good job at exposing the communication pa-rameters in an appropriate manner. When aconnection is established, it is possible for theapplication to require that the connection meetcertain requirements. If the requirements arenot met, an error is returned. When one setof required communication parameters can notbe met, it might still be possible for the appli-cation to access the resource via an alternatemechanism; e.g., whole �le caching instead ofremote reads and writes.Communication typically takes one of twoforms: point-to-point or broadcast. In point-to-point communication the client sends mes-sages to the particular server that can satisfythe request. If the contacted server can notsatisfy the request, it might respond with theidentity of a server that can. With broadcast,the client sends the message to everyone, andonly those servers that can satisfy the requestrespond.The advantage of broadcast is that it is easyto �nd a server that can handle a request;just send the request and the correct serverresponds. Unfortunately, broadcast does notscale well. Preliminary processing is requiredby all servers whether or not they can handle arequest. As the total number of requests grows,the load due to preliminary processing on eachserver will also grow.The use of global broadcast also limits thescalability of computer networks. Computernetworks improve their aggregate throughputby distributing network tra�c across multiplesubnets. Only those messages that need to passthrough a subnet to reach their destination aretransmitted on a particular subnet. Local com-munications in one part of a network is not seenby users in another. When messages are broad-cast globally, they are transmitted on all sub-nets, consuming available bandwidth on each.Although global broadcast should be avoided

in scalable systems, broadcast need not beruled out entirely. Amoeba [30] uses broad-cast on its subnets to improve the performanceof local operations. Communications beyondthe local subnet uses point-to-point communi-cation.Multicast, a broadcast-like mechanism, canalso be used. In multicast, a single message canbe sent to a group of servers. This reduces thenumber of messages required to transmit thesame message to multiple recipients. For mul-ticast to scale, the groups to which messagesare sent should be kept small (only those re-cipients that need to receive a message). Addi-tionally, the network should only transmit mul-ticast message across those subnets necessaryto reach the intended recipients.6.2 File SystemsThe �le system provides an excellent exampleof a service a�ected by scale. It is heavily used,and it requires the transfer of large amounts ofdata.In a global �le system, distribution is the �rstline of defense against overloading �le servers.Files are spread across many servers, and eachserver only processes requests for the �les thatit stores. Mechanisms used to �nd the serverstoring a �le given the �le's name are describedin Section 8. In most distributed systems, �lesare assigned to servers based on a pre�x of the�le name. For example, on a system where thenames of binaries start with \/bin", it is likelythat such �les will be assigned to a commonserver. Unfortunately, since binaries are morefrequently referenced than �les in other parts ofthe �le system, such an assignment might notevenly distribute requests across �le servers.Requests can also be spread across �le serversthrough the use of replication. Files are as-signed to multiple servers, and clients contact12



www.manaraa.com

a subset of the servers when making requests.The di�culty with replication lies in keepingthe replicas consistent. Techniques for doing soare described in Section 7. Since binaries rarelychange, manual techniques are often su�cientfor keeping their replicas consistent.Caching is extremely important in network �lesystems. A local cache of �le blocks can beused to make network delays less noticeable. A�le can be read over the network a block at atime, and access to data within that block canbe made locally. Caching signi�cantly reducesthe number of requests sent to a �le server, es-pecially for applications that read a �le severalbytes at a time. The primary di�culty withcaching lies in making sure the cached data iscorrect. In a �le system, a problem arises ifa �le is modi�ed while other systems have the�le, or parts of the �le, in their cache. Mecha-nisms to maintain the consistency of caches aredescribed in Section 9.An issue of importance when caching �les is thesize of the chunks to be cached. Most systemscache pieces of �les. This is appropriate whenonly parts of a �le are read. Coda [26] andearly versions of the Andrew File System [12]support whole �le caching, in which the en-tire �le is transferred to the client's worksta-tion when opened. Files that are modi�ed arecopied back when closed. Files remain cachedon the workstation between opens so that asubsequent open does not require the �le tobe fetched again. Approaches such as whole�le caching work well on networks with highlatency, and this is important in a geographi-cally large system. But, whole �le caching canbe expensive if an application only wants toaccess a small part of a large �le. Anotherproblem is that it is di�cult for diskless work-stations to support whole �le caching for large�les. Because of the range in capabilities of thecomputers and communication channels thatmake up a distributed system, multiple �le ac-cess mechanisms should be supported.

7 ReplicationReplication is an important tool for buildingscalable distributed systems. Its use in nam-ing, authentication, and �le services reducesthe load on individual servers and improves thereliability and availability of the services as awhole. The issues of importance for replica-tion are the placement of the replicas and themechanisms by which they are kept consistent.7.1 Placement of ReplicasThe placement of replicas in a distributed sys-tem depends on the purpose for replicating theresource. If a service is being replicated to im-prove the availability of the service in the faceof network partitions, or if it is being replicatedto reduce the network delays when the serviceis accessed, then the replicas should be scat-tered across the system. Replicas should be lo-cated so that a network partition will not makethe service unavailable to a signi�cant numberof users.If the majority of users are local, and if theservice is being replicated to improve the relia-bility of the service, to improve its availabilityin the face of server failure, or to spread theload across multiple servers, then replicas maybe placed near one another. The placementof replicas a�ects the choice of the mechanismthat maintains the consistency of replicas.7.2 ConsistencyA replicated object can logically be thought ofas a single object. If a change is made to theobject, the change should be visible to every-one. At a particular point in time, a set ofreplicas is said to be consistent if the value ofthe object is the same for all readers. The fol-lowing are some of the approaches that have13



www.manaraa.com

been used to maintain the consistency of repli-cas in distributed systems.Some systems only support replication of read-only information. Andrew and Athena takethis approach for replicating system binaries.Because such �les change infrequently, and be-cause they can't be changed by normal users,external mechanisms are used to keep the repli-cas consistent.Closely related to the read-only approach isreplication of immutable information. This ap-proach is used by the Amoeba �le server. Filesin Amoeba are immutable, and as a result, theycan be replicated at will. Changes to �les aremade by creating new �les, then changing thedirectory so that the new version of the �le willbe found.A less restrictive alternative is to allow up-dates, but to require that updates are sent toall replicas. The limitations of this approachare that updates can only take place when allof the replicas are available, thus reducing theavailability of the system for write operations.This mechanism also requires an absolute or-dering on updates so that inconsistencies donot result if updates are received by replicasin di�erent orders. A �nal di�culty is that aclient might fail during an update, resulting inits receipt by only some of the replicas.In primary-site replication, all updates are di-rected to a primary replica which then forwardsthe updates to the others. Updates may beforwarded individually, as in Echo [11], or thewhole database might be periodically down-loaded by the replicas as in Kerberos [29] andthe Berkeley Internet Domain Naming system(BIND) [31], an implementation of IDNS [15].The advantage of the primary-site approach isthat the ordering of updates is determined bythe order in which they are received at the pri-mary site, and updates only require the avail-ability of the primary site. A disadvantage of

the primary-site approach is that the availabil-ity of updates still depends on a single server,though some systems select a new primary siteif the existing primary goes down. An addi-tional disadvantage applies if changes are dis-tributed periodically: the updates are delayeduntil the next update cycle.For some applications, absolute consistency isoften not an overriding concern. Some de-lay in propagating a change is often accept-able, especially if one can tell when a responseis incorrect. This observation was exploitedby Grapevine, allowing it to guarantee onlyloose consistency. With loose consistency, itis guaranteed that replicas will eventually con-tain identical data. Updates are allowed evenwhen the network is partitioned or servers aredown. Updates are sent to any replica, andthat replica forwards the update to the othersas they become available. If con
icting updatesare received by di�erent replicas in di�erent or-ders, timestamps indicate the order in whichthey are to be applied. The disadvantage ofloose consistency is that there is no guaran-tee that a query returns the most recent data.With name servers, however, it is often possi-ble to check whether the response was correctat the time it is used.Maintaining a consistent view of replicateddata does not require that all replicas are up-to-date. It only requires that the up-to-dateinformation is always visible to the users ofthe data. In the mechanisms described so far,updates eventually make it to every replica.In quorum-consensus, or voting [9], updatesmay be sent to a subset replicas. A consis-tent view is maintained by requiring that allreads are directed to at least one replica that isup-to-date. This is accomplished by assigningvotes to each replica, by selecting two num-bers, a read-quorum and write-quorum, suchthat the read-quorum plus the write-quorumexceeds the total number of votes, and by re-quiring that reads and writes are directed to a14



www.manaraa.com

su�cient number of replicas to collect enoughvotes to satisfy the quorum. This guaranteesthat the set of replicas read will intersect withthe set written during the most recent update.Timestamps or version numbers stored witheach replica allow the client to determine whichdata is most recent.8 DistributionDistribution allows the information maintainedby a distributed service to be spread acrossmultiple servers. This is important for severalreasons: there may be too much informationto �t on a single server; it reduces the numberof requests to be handed by each server; it al-lows administration of parts of a service to beassigned to di�erent individuals; and it allowsinformation that is used more frequently in onepart of a network to be maintained nearby.This section will describe the use of distribu-tion in naming, authentication, and �le ser-vices. Some of the issues of importance fordistribution are the placement of the serversand the mechanisms by which the client �ndsthe server with the desired information.8.1 Placement of ServersDistributed systems exhibit locality. Certainpieces of information are more likely to be ac-cessed by users in one part of a network thanby users in another. Information should bedistributed to servers that are near the usersthat will most frequently access the informa-tion. For example, a user's �les could be as-signed to a �le server on same subnet as theworkstation usually used by that user. Simi-larly, the names maintained by name serverscan be assigned so that names for nearby ob-jects can be obtained from local name servers.In addition to reducing network tra�c, such

assignments improve reliability, since it is lesslikely that a network partition will make a lo-cal server inaccessible. In any case, it is desir-able to avoid the need to contact a name serveracross the country in order to �nd a resourcein the next room.By assigning information is to servers along ad-ministrative lines, an organization can avoiddependence on others. When distributed alongorganizational lines, objects maintained by anorganization are often said to be within a par-ticular domain (IDNS), or a cell (Andrew).Kerberos uses the term realm to describe theunit of distribution when there exists an ex-plicit trust relationship between the server andthe principals assigned to it.8.2 Finding the Right ServerThe di�culty with distribution lies in the dis-tribution function: the client must determinewhich server contains the requested informa-tion. Hierarchical name spaces make the taskeasier since names with common pre�xes areoften stored together2, but it is still necessaryto identify the server maintaining that part ofthe name space. The methods most frequentlyused are mounts, broadcast and domain-basedqueries.Sun's Network File System [25], Locus [32],and Plan 9 [24] use a mount table to identifythe server on which a a named object resides.The system maintains a table mapping namepre�xes to servers. When an object is refer-enced, the name is looked up in the mount ta-ble, and the request is forwarded to the appro-priate server. In NFS, the table can be di�er-ent on di�erent systems meaning that the samename might refer to di�erent objects on di�er-2In this discussion, pre�x means the most signi�cantpart of the name. For �le names, or for names in DEC'sGlobal Naming System, it is the pre�x. For domainnames it is really the su�x.15



www.manaraa.com

ent systems. Locus supports a uniform namespace by keeping the mount table the same onall systems. In Plan 9, the table is maintainedon a per-process basis.Broadcast is used by Sprite [22] to identify theserver on which a particular �le can be found.The client broadcasts a request, and the serverwith the �le replies. The reply includes the pre-�x for the �les maintained by the server. Thispre�x is cached so that subsequent requests for�les with the same pre�x can be sent directlyto that server. As discussed in Section 6.1, thisapproach does not scale beyond a local net-work. In fact, most of the systems that usethis approach provide a secondary name reso-lution mechanism to be used when a broadcastgoes unanswered.Distribution in Grapevine, IDNS, and X.500[5] is domain-based. Like the other tech-niques described, the distribution function indomain-based naming is based on a pre�x ofthe name to be resolved. Names are dividedinto multiple components. One componentspeci�es the name to be resolved by a par-ticular name server and the others specify theserver that is to resolve the name. For exam-ple, names in Grapevine consist of a registryand a name within the registry. A name ofthe form neuman.uw would be stored in theuw registry under the name neuman. IDNSand DEC's Global Naming System both sup-port variable depth names. In these systems,the point at which the name and the domainare separated can vary. In IDNS, the last com-ponents of the name specify the domain, andthe �rst components specify the name withinthat domain. For example, venera.isi.eduis registered in the name server for the isi.edudomain.To �nd a name server containing informationfor a given domain or registry, a client sendsa request to the local name server. The localname server sends back an answer, or infor-

a.isi.edu is 128.9.0.107

lookup a.isi.edu
isi.edu is 128.9.0.32

lookup a.isi.edu

lookup a.isi.edu
edu is 192.67.67.53

isi.edu

uw.edu

edu

time

serversclient

Figure 2: Resolving a domain-based namemation redirecting the query to another nameserver. With the two level name space sup-ported by Grapevine, only two queries are re-quired: one to �nd the server for a given reg-istry, and one to resolve the name. The serverfor a given registry is found by looking up thename in the gv registry which is replicated onevery Grapevine server.The resolution of a name with a variable num-ber of components is shown in �gure 2. Theclient sends a request to its local server request-ing resolution of the host name a.isi.edu.That server returns the name and address ofthe edu server. The client repeats its requestto the edu server which responds with thename and address for the isi.edu server. Theprocess repeats, with successively longer pre-�xes, until a server (in this case isi.edu) re-turns the address for the requested host. Theclient caches intermediate responses mappingpre�xes to servers so that subsequent requestscan be handled with fewer messages.Domain-based distribution of names scaleswell. As the system grows and queries be-come more frequent, additional replicas of fre-quently queried registries or domains can be16



www.manaraa.com

added. Grapevine's two level name space,though, places limits on scalability. Since ev-ery name server must maintain the gv registry,and because the size of this registry grows lin-early with the total number of name servers,the total number of name servers that can besupported is limited. Clearinghouse, a produc-tion version of Grapevine, addressed this prob-lem by supporting a three level name space.This allows the name service to scale to a largernumber of names, but it still eventually reachesa limit due to the size of the root or second-levelregistries.The primary disadvantage of domain-baseddistribution of names is that it can take manyqueries to resolve a single name. Fortunately,with the appropriate use of caching, many ofthese additional queries can be eliminated.Domain-based distribution can also be used forauthentication. In Kerberos, principals maybe registered in multiple realms. This allowsan organization to set up its own Kerberosserver, eliminating the need for global trust.The server's realm is used to determine thesequence of authentication servers to be con-tacted. If a client in one Kerberos realm wishesto use a server in another, it must �rst authen-ticate itself to the authentication server in theserver's realm using the AS in its own realm.Figure 3 shows multiple-hop cross realm au-thentication in Kerberos. In this �gure, thenumbers on messages loosely correspond tothose in �gure 1. 3+1 is a message authen-ticating the client to the next Kerberos server,accompanied with a request for credentials.Message 2T is the same as message 2 in �g-ure 1, except that instead of being encryptedin the client's key, the response is encrypted inthe session key from the ticket sent to the ASin the previous message.The initial version of Kerberos only supportedsingle-hop cross-realm authentication. This re-

S

mit.edu
K

edu
K

isi.edu
K

3+1

3+1
2

1

3
2T

2T

time

client

Figure 3: Cross-Realm Authenticationquired that each realm had to know about ev-ery other realm with which it was to communi-cate. This limitation does not exist in Version5 of Kerberos, or in DEC's global authentica-tion system [2]. With multiple-hop cross-realmauthentication, what is known after a client hasbeen authenticated may be as weak as \the lo-cal AS claims that a remote AS claims that an-other AS has authenticated the client as A". Toallow the end server to make an informed deci-sion, it is necessary that it knows the completelist of realms that took part in authenticatingthe client. In global authentication this infor-mation is part of the name of the authenticatedprincipal. The principal's name is constructedby concatenating the names of the links thatwere traversed at each step in the authentica-tion process. In Version 5 of Kerberos a listof the transited realms is included in the cre-dentials. Both protocols allow intermediariesto be skipped. This not only speeds up the au-thentication process, but it can make it moresecure.17



www.manaraa.com

9 CachingCaching is another important tool for build-ing scalable systems. It is a form of replica-tion, and like replication, two issues of impor-tance are the placement of caches, and howthey are kept consistent. The di�erence be-tween replication and caching is that cacheddata is a temporary replica. Updates need notbe propagated to caches. Instead, consistencyis maintained by invalidating cached data whenconsistency can not be guaranteed.9.1 Placement of CachesCaching can occur in multiple places. Cachingis usually performed by the client, eliminatingrepeated requests to network services. Cachingcan also take place on the servers implement-ing those services. For example, in addition tocaching on the workstation, Sprite [22] cachesblocks in the memory of the �le server. Read-ing a �le from the memory cached copy on the�le server is often faster than reading it fromthe client's local disk. The additional cachingon the �le server can improve performance be-cause the �le server might have more memorythan the client and because many of the blockscached on the �le server might be read by mul-tiple clients.Caching in multiple places is also useful forname servers. Most name servers unable to an-swer to a query will return the address of thename server sharing the longest pre�x in com-mon with the name being resolved. In manycases, that might be the name server for theroot. BIND [31] may be con�gured so that alocal name server makes queries on behalf ofthe client and caches the response (and anyintermediate responses) for use by other localclients. This additional level of caching allowshigher levels of the naming hierarchy to be by-passed, even if the client does not know the

server for the desired pre�x. For example, ifa client in the cs.washington.edu domainwishes to resolve venera.isi.edu, the localname server could make the query to the rootname server on behalf of the client, return theaddress for that name server, and cache it. If asecond host in the cs.washington.edu do-main wanted to resolve a.isi.edu, the localname server would then be able to return theaddress of the correct name server without anadditional query to root. For this to work,clients must be willing to �rst look for infor-mation locally instead of initially asking theroot name server.9.2 Cache ConsistencyAs was the case with replication, there aremany techniques that are used to maintain theconsistency of caches. The four most commonapproaches used to keep caches consistent indistributed systems are timeouts, check-on-use(hints), callbacks, and leases.Timeouts are used to maintain cache consis-tency in IDNS, DEC's name service, Prospero,and a number of other systems. In these sys-tems, responses from servers always include thetime for which they may be considered valid(time-to-live or TTL). The TTL can vary fromitem to item. It will usually be long for in-frequently changing information, and shorterfor information expected to change. Clientscan cache information until the TTL expires.When information changes, the TTL sets anupper bound on the time required before ev-eryone will be using the new information. Ifa change is expected in advance, the TTL canbe reduced so that the change will take e�ectquickly.If it is possible to tell when incorrect infor-mation has been obtained, cached entries canbe treated as hints. Hints don't have to bekept consistent; if out of date, that fact will18



www.manaraa.com

be detected when the data is used and the en-try can be 
ushed. Grapevine and QuickSilver[4] both use hints. Hints are useful in namingsystems if an objects identi�er can be storedalong with the object itself. The cached datatells where the object can be found, but if theobject has moved, that fact will be apparentwhen the client attempts to retrieve it. Bytreating cached data as hints, it may be useduntil a change is detected, avoiding the needfor more complicated mechanisms to keep thecache consistent.In some systems, the only way to check the va-lidity of cached data is to go back to the serverthat provided the information originally. Forsmall amounts of data, the cost of doing so isthe same as if the information were not cachedat all. For larger amounts of data, the checktakes signi�cantly less time than transferringthe data itself. The Andrew File System [12]originally used this form of check-on-use to de-cide if a locally cached copy of a �le could beused. Experience showed that the checks werethe primary bottleneck, and that, in the com-mon case, the �les were unchanged. For thisreason, the next implementation (and subse-quently Coda) used callbacks. When a �le iscached, the �le server adds the caching site toa list stored along with the �le. If the �lechanges, a message is sent to all sites withcopies telling them that the cached copy is nolonger valid. By requiring that clients checkthe validity of �les when they reboot (or if con-tact with the �le server has been lost), prob-lems due to lost callbacks can be minimized.Leases [10] are similar to callbacks, but thereare several important di�erences. A lease even-tually expires, and a server granting a leaseguarantees that it will not make a change dur-ing the period the lease is valid unless it �rstgets approval from the lease holder. A clientholding a lease can cache the data to whichthe lease applies for the term of the lease, oruntil it authorizes the server to break the lease.

Tradeo�s similar to those for choosing a TTLapply to the selection of the term of a lease.10 The User's ViewMany mechanisms are used to help the systemdeal with scale. Unfortunately, the e�ect ofscale on the user has received relatively littleattention. The user has �nite mental capacity.As the number of computers in a system grows,as the system expands geographically, and as itbegins to cross administrative boundaries, thepotential exists for the size of the system tooverwhelm the user.Mechanisms are needed to allow objects andresources that are of interest to be organized ina manner that allows them to be easily foundagain. One doesn't want them quickly lost ina sea of objects and resources in which thereis little interest. It is also important that theuser be able to identify additional objects andresources of potential interest.Traditional systems such as Andrew, Locusand Sprite support a uniform global namespace which uniquely names all objects. Thisapproach allows simple sharing of names, andit has the advantage that it is no harder forusers to understand than the systems they pre-viously used. Unfortunately, as systems crossadministrative boundaries it becomes di�cultto obtain agreement on what should appearwhere in the name space. The solution is thatthe names of sites appear at the top level andeach site names its own objects. Unfortunately,this results in related information being scat-tered across the global name space and usersdon't know where to look.Even with a familiar system model, the num-ber of objects and resources that are availablecan overwhelm the user. For this reason, mech-anisms are needed to help the user organize19



www.manaraa.com

information and to reduce the amount of infor-mation that has to be dealt with. The solutionis to allow individual users to customize theirname space so that they see only the objectsthat are of interest. This approach is takenin Plan 9 [24], Prospero [20], Tilde [7], andQuickSilver [4]. Naming in these systems isoften described as user-centered though, withthe exception of Prospero, it might better bedescribed as user-exclusive; an object must beadded to the user's name space before it can benamed. In Prospero, it is expected that mostobjects start out in a user's name space, butwith lengthy names. When a user expressesan interest in an object, a link is added to thename space, bringing the object closer to thecenter (root).An objection to user-centered naming is thatthe same name can refer to di�erent objectswhen used by di�erent users. To address thisobjection, Prospero supports closure: everyobject in the system has an associated namespace. Names are normally resolved within thename space associated with the object in whichthe name is found.A few systems have looked at mechanisms foridentifying objects that are needed when theobject's full name is not known. Pro�le [23]supports attribute-based naming. In attribute-based naming, the user speci�es known at-tributes of an object instead of its name. Tobe used in place of a name, enough attributesmust speci�ed to uniquely identify the ob-ject. In order to scale, information must bedistributed across multiple name servers. InPro�le, each user has a working set of nameservers, and each is contacted. Responses froma name server may require further resolution(perhaps by a di�erent server). This successiveresolution of links is similar to the mechanismused to resolve names in traditional distributedsystems. The key di�erence is that the links donot necessarily form a hierarchy.

Alternative approaches are being examined bythe Resource Discovery Project at the Univer-sity of Colorado. These approaches use infor-mation already available over the network. Inone approach, resource discovery agents [28]collect and share information with other agentsscattered across the system. A user wishing to�nd a resource asks one of these agents, andthe agents route queries among themselves, ex-ploiting the semantics of the query to limit theactivity that must take place. If the resourceis found, a response is returned to the client.Prospero takes a slightly di�erent approach toidentifying objects of interest. Tools are pro-vided to allow users to customize and orga-nize their views of the system. Prospero sup-ports a user-centered name space and closure.Naming of all objects and resources is handledthrough a uid-based directory service. Namespaces may overlap, and cycles are allowed.The Prospero directory service supports �ltersand union links. A �lter is a program thatcan modify the results of a directory querywhen the path for the queried directory passesthrough the �ltered link. A union link allowsthe results of a (possibly �ltered) query to bemerged with the contents of the directory con-taining the link.The nature of the directory service, and its sup-port for �lters and union links allows users toorganize their own objects and those of othersin many ways. The ability for objects to havemultiple names makes it much easier to �ndthings; one can look for an object using the or-ganization that best �ts the information that isknown. Users and organizations set up direc-tories within which they organize objects andthey make these directories available to others.It is through this sharing that users �nd newobjects.20



www.manaraa.com

11 Building Scalable SystemsThis section presents suggestions for buildingscalable systems. These suggestions are dis-cussed in greater detail in the paper and arepresented here in a form that can be used as aguide. The hints are broken into groups corre-sponding to the primary techniques of replica-tion, distribution and caching.When building systems it is important to con-sider factors other than scalability. An excel-lent collection of hints on the general designof computer systems is presented by Lampsonin [13].11.1 ReplicationReplicate important resources. Replica-tion increases availability and allows requeststo be spread across multiple servers, thus re-ducing the load on each.Distribute the replicas. Placing replicas indi�erent parts of the network improves avail-ability during network partitions. By placingat least one replica in any area with frequentrequests, those requests can be directed to alocal replica reducing the load on the networkand minimizing response time.Use loose consistency. Absolute consis-tency doesn't scale well. By using loose consis-tency the cost of updates can be reduced, whilechanges are guaranteed to eventuallymake it toeach replica. In systems that use loose consis-tency it is desirable to be able to detect out-of-date information at the time it is used.11.2 DistributionDistribute across multiple servers. Dis-tributing data across multiple servers decreasesthe size of the database that must be main-tained by each server, reducing the time neededto search the database. Distribution also

spreads the load across the servers reducing thenumber of requests that are handled by each.Distribute evenly. The greatest impacton scalability will be felt if requests can bedistributed to servers in proportion to theirpower. With an uneven distribution, one servermay be idle while others are overloaded.Exploit locality. Network tra�c and latencycan be reduced if data are assigned to serversclose to the location from which they are mostfrequently used. The Internet Domain NamingSystem does this. Each site maintains the in-formation for its own hosts in its own servers.Most queries to a name server are for localhosts. As a result, most queries never leavethe local network.Bypass upper levels of hierarchies. In hi-erarchically organized systems, just about ev-eryone needs information from the root. Ifcached copies are available from subordinateservers, the upper levels can be bypassed. Insome cases, it might be desirable for a server toanswer queries only from its immediate subor-dinates, and to let the subordinates make theresponses available to their subordinates.11.3 CachingCache frequently accessed data. Cachingdecreases the load on servers and the net-work. Cached information can be accessedmore quickly than if a new request is made.Consider access patterns when caching.The amount of data normally referenced to-gether, the ratio of reads to writes, the likeli-hood of con
icts, the number of simultaneoususers, and other factors will a�ect the choice ofcaching mechanisms. For example, if �les arenormally read from start to �nish, caching theentire �le might be more e�cient than cachingblocks. If con
icts between readers and writ-ers are rare, using callbacks to maintain con-21



www.manaraa.com

sistency might reduce requests. The ability todetect invalid data on use allows cached datato be used until such a condition is detected.Cache timeout. By associating a time-to-live(TTL) with cached data an upper bound canbe placed on the time required for changes tobe observed. This is useful when only even-tual consistency is required, or as a backup toother cache consistency mechanisms. The TTLshould be chosen by the server holding the au-thoritative copy. If a change is expected, theTTL can be decreased accordingly.Cache at multiple levels. Additional lev-els of caching often reduce the number of re-quests to the next level. For example, if aname server handling requests for a local net-work caches information from the root nameservers, it can request it once, then answer localrequests for that information instead of requir-ing each client to request it separately. Simi-larly, caching on �le servers allows a block tobe read (and cached) by multiple clients, butonly requires one disk access.Look �rst locally. By looking �rst for nearbycopies of data before contacting central servers,the load on central servers can be reduced. Forexample, if a name is not available from a cachein the local system, contact a name server onthe local network before contacting a distantname server. Even if it is not the authorityfor the name to be resolved, the local nameserver may possess information allowing theroot name server to be bypassed.The more extensively something isshared, the less frequently it should bechanged. When an extensively shared objectis changed, a large number of cached copies be-come invalid, and each must be refreshed. Asystem should be organized so that extensivelyshared data is relatively stable. A hierarchi-cal name space exhibits this property. Mostchanges occur at the leaves of the hierarchy.

Upper levels rarely change.11.4 GeneralShed load, but not too much. When com-putation can be done as easily by the client asthe server, it is often best to leave it to theclient. However, if allowing the client to per-form the computation requires the return ofa signi�cantly greater amount of information(as might be the case for a database query),it is more appropriate for the server to do thecomputation. Additionally, if the result canbe cached by the server, and later provided toothers, it is appropriate to do the computationon the server, especially if the computation re-quires contacting additional servers.Avoid global broadcast. Broadcast doesnot scale well. It requires all systems to pro-cess a message whether or not they need to.Multicast is acceptable, but groups should in-clude only those servers that need to receivethe message.Support multiple access mechanisms.Applications place varying requirements on ac-cess mechanisms. What is best for one appli-cation might not be so for another. Chang-ing communication parameters can also a�ectthe choice of mechanism. Multiple mechanismsshould be supported when accessing objectsand resources. The client should choose themethod based on the prevailing conditions.Keep the user in mind. Many mechanismsare used to help the system deal with scale.The mechanisms that are used should not makethe system more di�cult to understand. Evenwith a familiar system model, the number ofavailable objects and resources can overwhelmthe user. Large systems require mechanismsthat reduce the amount of information to beprocessed and remembered by the user. Thesemechanisms should not hide information thatmight be of interest.22



www.manaraa.com

11.5 Evaluating Scalable SystemsThere are many questions to be asked whenevaluating the scalability of a distributed sys-tem. This subsection lists some of the ques-tions that are important. It does not providea formula that yields a number. In fact, di�er-ent systems scale in di�erent ways. One sys-tem may scale better administratively, whileanother scales better numerically. There areso many unknowns that a�ect scaling that ex-perience is often the only true test of a system'sability to scale.The �rst set of questions concerns the use of thesystem. How will the frequency of queries growas the system grows? What percentage of thosequeries must be handled by central servers?How many replicas of the central servers arethere, is this enough, can more be added, whatproblems are introduced by doing so, and arethere any bottlenecks?The next set of questions concerns the datathat must be maintained. How does the size ofthe databases handled by the individual serversgrow? How does this a�ect query time? Howoften will information change? What updatemechanism is used, and how does it scale? Howwill an update a�ect the frequency of queries?Will caches be invalidated, and will this resultin a sudden increase in requests as caches arerefreshed?The �nal question concerns the administrativecomponent of scale. Many systems require asingle authority that makes �nal decisions con-cerning the system. Is this required, and is itpractical in the environment for which the sys-tem will be used?Asking these questions will point out some ofthe problem areas in a system. This is not acomplete list. It is entirely possible that impor-tant factors not addressed will cause a systemto stop scaling even earlier.

12 ConclusionsThis paper examined the problems that arise assystems scale. It has used examples from manysystems to demonstrate the problems and theirsolutions. The systems mentioned are not theonly systems for which scale was a factor intheir design; they simply provided the mostreadily available examples for the mechanismsthat were discussed. The discussion has neces-sarily taken a narrow view of the systems thatwere discussed, examining individual subsys-tems instead of the systems as a whole. Thee�ects of scale, however, are felt throughoutthe system.This paper has shown how scale a�ects largesystems. Scale can be broken into its numeri-cal, geographical, and administrative compo-nents. Each component introduces its ownproblems, and the solutions employed by anumber of systems were discussed. The threetechniques used repeatedly to handle scale arereplication, distribution, and caching.A collection of suggestions for designing scal-able systems was presented in Section 11.These suggestions expand upon the three pri-mary techniques and suggest additional waysin which they can be applied. It is hoped thatthese hints will help system designers addressscale in the design of future distributed sys-tems.AcknowledgmentsI would like to thank Brian Bershad, RobertCooper, Barbara Gordon, Bruce Gordon, TerryGray, Andrew Herbert, Richard Ladner, EdLazowska, Hank Levy, Mary Ann G. Neuman,David Notkin, John Zahorjan, and the anony-mous referees who commented on earlier draftsof this paper.23



www.manaraa.com

Appendix: Systems Designed with Scale in MindScalability is included among the design criteria of a number of recent systems. The degreeto which these systems scale ranges from a collection of computers on a local area network,to computers distributed across the entire Internet. This appendix describes some of thesesystems, states the degree to which each system is intended to scale, and lists some of the waysin which the system addresses the problems of scale. Table 1 summarizes this information intabular form.Amoeba, developed at Vrije Universiteit andCWI in Amsterdam, is a capability-based dis-tributed operating system which has been usedacross long haul networks spanning multipleorganizations. Objects are referenced by capa-bilities which include identi�ers for the serverand object, and access rights for the object.The capabilities provide both a distributednaming and authorization mechanism. [16, 30]The Andrew system, developed at Carnegie-Mellon University, runs on thousands of com-puters distributed across the university cam-pus. Its most notable component is the An-drew File System which now ties together�le systems at sites distributed across theUnited States. Coda is a follow-on to Andrew,improving availability, especially in the face ofnetwork partitions. [12, 26]MIT's Project Athena is a system built fromthousands of computers distributed acrosscampus. Distributed services provide authen-tication, naming, �ling, printing, mail and ad-ministrative functions. Kerberos was devel-oped as part of Project Athena. [6]Dash, under development at Berkeley, is adistributed operating system designed for useacross large networks exhibiting a range oftransmission characteristics. Dash is notablefor exposing these characteristics by allowingthe application to require that the connectionmeet certain requirements and returning an er-ror if those requirements cannot be met. [1]

DEC's Global Naming System, developedat at DEC's Systems Research Center, was de-signed to support naming in large networksspanning multiple organizations. It is notablefor the attention paid to reorganization of thename space as independent name spaces aremerged, or as the external relationship betweenorganizations change (e.g. mergers or acquisi-tions). Echo is a distributed �le system sup-porting consistent replication of local parti-tions, but with partitions tied together usingthe loosely consistent Global Naming System.DEC's Global Authentication System isnotable for the fact that a principal's name isnot absolute, but is instead determined by thesequence of authentication servers used to au-thenticate the principal. [2, 11, 14]Grapevine was one of the earliest distributedsystems designed to scale to a large network.It was developed at Xerox PARC to supportelectronic mail, to provide a name service forthe location of network services, and to sup-port simple password-based authentication ona world-wide network connecting Xerox sites.[3, 27]The Heterogeneous Computer SystemsProject at the University of Washingtondemonstrated that a single interface could beused to communicate with systems using dif-ferent underlying protocols and data represen-tations. This is important for large systemswhen it is not practical to dictate the choice ofhardware and software across multiple sites, orwhen the underlying mechanisms have di�erentstrengths and weaknesses. [21]24



www.manaraa.com

The Internet Domain Naming System(IDNS) is a distributed name service, run-ning on the Internet, supporting the transla-tion of host names to Internet addresses andmail forwarders. Each organization maintainsreplicated servers supporting the translationof names for its own part of the name space.[15, 31]Kerberos is an encryption-based networkauthentication system, developed by MIT'sProject Athena, which supports authenticationof users both locally, and across organizationalboundaries. [29]Locus, developed at the UCLA, was designedto run on systems distributed across a local-area network. Locus is notable as one of theearliest distributed systems to support a uni-form view of the �le system across all nodes inthe system. [32]SUN'sNetwork File System supports trans-parent access to �les stored on remote hosts.Files are named independently on each host.Before a remote �le can be accessed, the remote�le system containing the �le must be mountedon the local system, establishing a mapping ofpart of the local �le name space to �les on theremote system. The NFS server maintains verylittle information (state) about the clients thatuse it. [25]Plan 9 from Bell Labs, intended for use by alarge corporation, supports a process-centered3name space, allowing users to incorporate intotheir name space those parts of the global sys-tem that are useful. [24]Pro�le, developed at the University of Ari-zona, is an attribute-based name service thatmaps possibly incomplete information aboutcoarse-grained objects on a large network to3Perhaps better described as process- or user-exclusive since objects must �rst be added to the user'sname space before they can be named.

the object(s) matching that information. [23]Prospero, developed at the University ofWashington, runs on systems distributedacross the Internet. It supports an object-centered view of the entire system, allowingusers to de�ne their own virtual system byspecifying the pieces of the global system thatare of interest. Prospero's support for closureresolves the problems caused by the use of mul-tiple name spaces. [20]QuickSilver, developed at IBM's AlmadenResearch Center, is notable for its proposeduse of a user-centered3 name space. In a sys-tem spanning a large, multi-national corpora-tion, such a name space allows users to see onlythose parts of the system that concern them.[4]Sprite, a network operating system developedat Berkeley, was designed for use across a localarea network. Its �le system is notable for itsuse of caching on both the client and the serverto improve performance, and for its use of pre-�x tables to distribute requests to the correct�le server. [22]The Tilde naming system, developed at Pur-due, supports process-centered3 naming. Thisallows one to specify, on a per-process basis,how names will map to pieces of the globalsystem. This ability provides applications withthe advantages of a global name space for those�le names that should be resolved globally,while allowing parts of the name space to bespeci�ed locally for �le names which would bebetter resolved to local �les. [7]X.500 is an ISO standard describing a dis-tributed directory service that is designed tostore information about users, organizations,resources, and similar entities worldwide. Scal-ability is addressed in largely the same manneras in the Internet Domain Name Service. [5]25



www.manaraa.com

Intended Environment The Methods UsedSystem Service # nodes geographic administrative replication distribution cachingAmoeba general 1 wide-area multiple organizations immutable capabilities yesAndrew �le system 10,000 wide-area multiple organizations read-only cell/volume blocksAthena general 10,000 campus university service clusters yesCoda �le system 10,000 global multiple organizations optimistic volume whole �leDash general 1 wide-area multiple organizations yes yes yesDEC's Global naming 1 global multiple organizations loose directories time-to-liveDEC's Global authentication 1 global multiple organizations loose directories -Echo �le system 1 wide-area multiple organizations loose/primary volume yesGrapevine general 2,000 company multiple departments loose registry yesHCS general - wide-area multiple organizations - yes -IDNS naming 1 global multiple organizations primary domain yesKerberos authentication 1 global multiple organizations primary realm ticketsLocus general 100 local department primary mount yesNFS �le system - local single organization no mount blocksPlan 9 general 10,000 company multiple depatments no mount noPro�le naming 1 wide-area multiple organizations information principal client-managedProspero naming 1 global multiple organizations yes uid yesQuicksilver �le system 10,000 company multiple departments no pre�x immutableSprite �le system 100 local department read-only pre�x client&serverTilde naming 100 local single organization no trees yesX.500 naming 1 global multiple organizations yes yes yesTable 1: Important distributed systems and the methods they use to handle scale



www.manaraa.com

26



www.manaraa.com

References[1] David P. Anderson and Domenico Ferrari.The Dash project: An overview. TechnicalReport 88/405, Computer Science Division,Department of Electrical Engineering andComputer Science, University of Californiaat Berkeley, August 1988.[2] Andrew D. Birrell, Butler W. Lamp-son, Roger M. Needham, and Michael D.Schroeder. A global authentication servicewithout global trust. In Proceedings of theIEEE Symposium on Security and Privacy,pages 223{230, April 1986.[3] Andrew D. Birrell, Roy Levin, Roger M.Needham, and Michael D. Schroeder.Grapevine: An exercise in distributed com-puting. Communications of the ACM,25(4):260{274, April 1982.[4] Luis-Felipe Cabrera and Jim Wyllie. Quick-Silver distributed �le services: An architec-ture for horizontal growth. In Proceedingsof the 2nd IEEE Conference on ComputerWorkstations, pages 23{27, March 1988.Also IBM Research Report RJ 5578, April1987.[5] CCITT. Recommendation X.500: The Di-rectory, December 1988.[6] George A. Champine, Daniel E. Geer Jr.,and William N. Ruh. Project athena as adistributed computer system. IEEE Com-puter, 23(9):40{51, September 1990.[7] Douglas Comer, Ralph E. Droms, andThomas P. Murtagh. An experimentalimplementation of the Tilde naming sys-tem. Computing Systems, 4(3):487{515,Fall 1990.[8] Robert J. Fowler. Decentralized ObjectFinding Using Forwarding Addresses. PhD

thesis, University of Washington, Decem-ber 1985. Department of Computer Sciencetechnical report 85-12-1.[9] David K. Gi�ord. Weighted voting for repli-cated data. In Proceedings of the 7th ACMSymposium on Operating System Princi-ples, pages 150{159, December 1979. Pa-ci�c Grove, California.[10] Cary G. Gray and David R. Cheriton.Leases: An e�cient fault-tolerant mecha-nism for distributed �le cache consistency.In Proceedings of the 12th ACM Symposiumon Operating Systems Principles, pages202{210, December 1989.[11] Andy Hisgen, Andrew Birrell, TimothyMann, Michael Schroeder, and GarretSwart. Availability and consistency trade-o�s in the Echo distributed �le system. InProceedings of the 2nd IEEE Workshop onWorkstation Operating Systems, pages 49{54, September 1989.[12] John H. Howard, Michael L. Kazar,Sherri G. Menees, David A. Nichols,M. Satyanarayanan, Robert N. Side-botham, and Michael J. West. Scale andperformance in a distributed �le system.ACM Transactions on Computer Systems,6(1):51{81, February 1988.[13] Butler W. Lampson. Hints for computersystem design. In Proceedings of the9th ACM Symposium on Operating SystemPrinciples, pages 33{48, 1983.[14] Butler W. Lampson. Designing a globalname service. In Proceedings of the 4thACM Symposium on Principles of Dis-tributed Computing, August 1985.[15] Paul Mockapetris. Domain names - con-cepts and facilities. DARPA Internet RFC1034, November 1987.27



www.manaraa.com

[16] S. J. Mullender and A. S. Tanenbaum. Thedesign of a capability-based distributed op-erating system. The Computer Journal,29(4):289{299, 1986.[17] Roger M. Needham and Michael D.Schroeder. Using encryption for authen-tication in large networks of computers.Communication of the ACM, 21(12):993{999, December 1978.[18] B. Cli�ord Neuman. Issues of scale in largedistributed operating systems. GeneralsReport, Department of Computer Science,University of Washington, May 1988.[19] B. Cli�ord Neuman. Proxy-based autho-rization and accounting for distributed sys-tems. Technical Report 91-02-01, Depart-ment of Computer Science and Engineer-ing, University of Washington, March 1991.[20] B. Cli�ord Neuman. The Prospero File Sys-tem: A global �le system based on the Vir-tual System Model. In Proceedings of theWorkshop on File Systems, May 1992.[21] David Notkin, Andrew P. Black, Edward D.Lazowska, Henry M. Levy, Jan Sanislo, andJohn Zahorjan. Interconnecting heteroge-neous computer systems. Communicationsof the ACM, 31(3):258{273, March 1988.[22] John K. Ousterhout, Andrew R. Cheren-son, Frederick Douglis, Michael N. Nelson,and Brent B. Welch. The Sprite networkoperating system. Computer, 21(2):23{35,February 1988.[23] Larry L. Peterson. The Pro�le naming ser-vice. ACM Transactions on Computer Sys-tems, 6(4):341{364, November 1988.[24] D. Presotto, R. Pike, K. Thompson, andH. Trickey. Plan 9: A distributed sys-tem. In Proceedings of Spring 1991 Eu-rOpen, May 1991.

[25] R. Sandberg, D. Goldberg, S. Kleiman,D. Walsh, and B. Lyon. Design and imple-mentation of the Sun Network File System.In Proceedings of the Summer 1985 UsenixConference, pages 119{130, June 1985.[26] Mahadev Satyanarayanan. Scalable, se-cure, and highly available distributed �leaccess. IEEE Computer, 23(5):9{21, May1990.[27] Michael D. Schroeder, Andrew D. Birrell,and Roger M. Needham. Experience withGrapevine: The growth of a distributedsystem. ACM Transactions on ComputerSystems, 2(1):3{23, February 1984.[28] M. F. Schwartz. The networked resourcediscovery project. In Proceedings of theIFIP XI World Congress, pages 827{832,August 1989. San Francisco.[29] J. G. Steiner, B. C. Neuman, and J. I.Schiller. Kerberos: An authentication ser-vice for open network systems. In Pro-ceedings of the Winter 1988 Usenix Confer-ence, pages 191{201, February 1988. Dal-las, Texas.[30] Andrew S. Tanenbaum, Robbert van Re-nesse, Hans van Staveren, Gregory J.Sharp, Sape J. Mullender, Jack Jansen,and Guido van Rossum. Experience withthe Amoeba distributed operating system.Communications of the ACM, 33(12):47{63, December 1990.[31] Douglas B. Terry, Mark Painter, David W.Riggle, and Songnian Zhou. The Berkeleyinternet domain server. In Proceedings ofthe 1984 Usenix Summer Conference, pages23{31, June 1984.[32] B. Walker, G. Popek, R. English, C. Kline,and G. Thiel. The Locus distributed op-erating system. In Proceedings of the 9thACM Symposium on Operating SystemsPrinciples, pages 49{70, October 1983.28


